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Comment on ‘‘Signal-to-noise ratio gain in neuronal systems’’
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We discuss the gain in signal-to-noise ratio~SNR! recently reported by Liuet al. @Phys. Rev. E63, 051912
~2001!# in the Hodgkin-Huxley neuronal model. We show first that the possibility of signal-to-noise ratio
enhancements can be checked by consideration of the statistical characteristics of switching between the
system states, and we examine how the SNR depends on the shape of a periodic signal. Second, we attempt to
verify the SNR gain reported by Liuet al.: based on spectral calculations and analyses of switching statistics,
we are unable to find any SNR gain in the Hodgkin-Huxley model.
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Liu et al. have reported@1# noise-induced absolute en
hancements of the signal-to-noise ratio~SNR! in the
Hodgkin-Huxley model of a neuron. Solving the equatio
numerically, they found that the output SNR could exce
the input SNR in the following cases:~a! a single neuron
forced by harmonic signal and coloured noise;~b! a single
neuron forced by pulse signal and colored noise; and~c! a
neural network forced by a common harmonic signal a
independent colored noise sources.

In this Comment we present arguments and numerica
sults demonstrating that, for the same parameters as Ref@1#,
such SNR improvements do not occur for either case~a! or
case~b!.

In apparently demonstrating the possibility of an SNR e
hancement, Liuet al. @1# have relied on a spectral calculatio
of the input and output neuron signals, obtained through
merical solution of the Langevin equations. Previous stud
@2,3# of the stochastic resonance~SR! effect have shown tha
numerical calculations of input and output SNR values
very readily prone to error. They have also demonstrated@2#
that, at least in the linear response limit, the SNR of a h
monic signalcannotbe enhanced by passage through a s
chastic resonator.

A noise-induced absolute enhancement of the SNR
thus, to say the least, unusual. There are only two kno
cases where it has been reliably established. One is the
crossing detector~LCD! trigger system@4#, and the other is
for the passage of a square wave through a Schmidt trig
system@5,6#. In each of these cases there are simple phys
arguments as to how the effect arises, and a mass of corr
ratory evidence as to its reality. For the more comp
Hodgkin-Huxley system@1#, on the other hand, there ar
only the numerical simulations. Methods of checking th
validity are therefore much to be desired. One way of do
so is through consideration of the theoretical background~al-
though rigorous theoretical arguments exist only for the s
cific cases of the LCD-trigger@4# and a two-state system
with a static nonlinearity@7#!. Another obvious check is
through independent numerical simulations. In what follow
we adopt both of these approaches.

We first consider the occurrence of absolute SNR
hancements in the Schmidt trigger, and note how the sig
ture of this effect is exhibited in the hopping statistics. W
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then model the Hodgkin-Huxley system to see if a simi
signature arises. We also simulate the full system and m
direct comparisons between the input and output SNR to
if the latter becomes larger that the former.

In Refs.@5,6#, SNR enhancement was investigated via
analysis of the statistical characteristics of switching eve
between states. We now consider some of these results@6# in
more detail. We have examined the transmission of a p
odic signal and colored noise through a Schmidt trigger
the basis of an analog electronic experiment. We have c
sidered two types of periodic signals: harmonic signal a
rectangular, which we will refer to as apulse signal. To
avoid aliasing, the experimental data were filtered by lo
pass analog filters. The data were then digitized with
analog-digital converter card in a computer, where they w
then used to calculate the power spectrum and to buil
residence time@8# and phase@9# distributions. The power

FIG. 1. Experimental results for the Schmidt trigger. The diffe
enceG between the output and input SNRR is plotted as a function
of noise intensitys for harmonic (s) and for pulse periodic (n)
signals. The threshold of the Schmidt trigger,Ut50.47 V; the am-
plitude of the periodic signal is 0.41 V; the frequency of the pe
odic signal is 2p(400) Hz; and the cutoff frequency of the noise
100 kHz. The values ofG and noise intensitys for which residence
time and phase distributions are shown in Figs. 2–4 are indica
by arrows.
©2003 The American Physical Society01-1
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spectrum was calculated by fast Fourier transform. The
sults are presented in Figs. 1–3.

In Fig. 1 the difference between output and input SN
@10#, G5Ro2Ri , is plotted as a function of noise amplitud
s for pulse and harmonic signals; note thatG is equivalent to
the quantitygu in Ref. @1#. For the pulse signal there is a
interval of noise amplitude within which the output SNRRo
exceeds the input valueRi . The residence time and phas
distributions for different noise amplitudes~see caption of
Fig. 1! are shown in Figs. 2,3. For the harmonic signal,
widths of the phase distribution@Fig. 2~a!# and the residence
time distribution@Figs. 3~a!-3~c!# are increasing with noise
intensity, and there is no improvement of SNR. For the pu
signal, within the range of noise amplitude where outp
SNR exceeds the input value, the distribution widths@Figs.
2~b! and 3~d!-3~f!# decrease with noise intensity. The res
dence time distribution@Figs. 3~d!-3~f!# has peaks at mul
tiples of the signal period when an improvement in SN
exists. Thus, based on the behaviors of residence times
phase distributions, we can suggest an additional criterion
the existence of a positiveG: if there is SNR gain, then the
residence time distribution has one peak arising at multip

FIG. 2. Experimental results for the Schmidt trigger. Its pha
distributionsp(w) are shown for~a! harmonic and~b! pulse peri-
odic signals. The different lines correspond to the arrows in Fig
The thin full line corresponds to arrow 1, the dashed line to arrow
and the dash-dotted line to arrow 3. The values of phasew are
normalized by 2p. The bold full lines indicate the shape of signa
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of the signal period, and the widths of both the residen
time and phase distribution decrease with increasing n
intensity. The conclusion is correct if we consider hoppi
dynamics only. This criterion can be applied to check t
results reported in Ref.@1#, which involved precisely this
kind of dynamics.

Note that, just as for the Schmidt trigger, we have o
served an association between an improvement in SNR
an evolution of the hopping statistic distribution for the LC
trigger and an overdamped bistable oscillator forced
large, but subthreshold, pulses and noise. In all the case
systems are in the strongly nonlinear regime@2,3,5#, and the
mechanism for improvement of the SNR consists of a n
linear transformation of additive sum of pulse signal a
noise to qualitatively different hopping process. The posit
G phenomenon depends crucially on the pulseshape, and it
is not observed for harmonic subthreshold signals@5,6#.

To illustrate the truth of the latter statement, we consid
the influence of a shape of periodic signal on SNR for
case of a Schmitt trigger driven by noise and the signalx(t)
that is generated by a Van der Pol self-oscillator,

y~ t1h!5sgn@Uty~ t !2ax~ t !/b2j~ t !#,

ẍ2e~12x2!ẋ1v0
2x50. ~1!

Here y(t1h) and y(t) are the Schmidt trigger outputs a
time moments (t1h) and t, respectively,h is the time step
that defines the trigger relaxation time,Ut50.1 is the trigger
threshold,j(t) is colored noise of intensitys, cutoff fre-
quency f c5100, a is the amplitude~maximum deviation
from zero level! of the signal,x(t) is the Van der Pol oscil-
lator output,b is its amplitude,e is the nonlinearity param-
eter of the oscillator, andv0 is the parameter that defines i
natural oscillation frequency. The parameterv0 is chosen to
keep the oscillation period equal toT52p. The shape of the
generated signalx depends one and approaches a rectang
lar shape ase increases. To characterize the shape of
signalx, we introduce the qualityS:

S5

E
0

T

ux~ t !u/b

T
.

S is equal to 1 for a pulse signal andS51/p'0.6366 for a
harmonic signal.

The dependences ofG on the noise amplitudes are dis-
played in Fig. 4 for different values ofe. It can be seen tha
for the signal shapes that are harmonic, or close to harmo
SNR improvement does not occur:G only increases above
zero for larger values ofe ~and for the pulse signal, show
for comparison!; and SNR improvement takes place only f
certain shapes of signals, which are similar to the~rectangu-
lar! pulse signal shape.

Of course, as the authors of Ref.@1# have correctly noted,
the Hodgkin-Huxley model is quite different from all th
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FIG. 3. Experimental results for the Schmidt trigger driven by a harmonic signal~left column! and pulse periodic signal~right column!.
Residence time distributionsp(t) shown for three different noise intensities correspond to the arrows in Fig. 1,~a! and ~d! correspond to
arrow 1,~b! and ~e! to arrow 2, and~c! and ~f! to arrow 3. The values of time are normalized by the period of the harmonic signal.
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FIG. 4. The results of numerical simulations of system~1!. The
difference in SNRR between input and output,G, is plotted as a
function of noise intensitys for different shapesof the periodic
signal: harmonic signal (s) with S52/p'0.6366; pulse signa
(n) with S51; parametere51 (3) with S'0.6493; e55 ~1!
with S'0.7455; e510 (,) with S'0.7862; e525 (h) with S
'0.9265; ande5100 (L) with S'0.9822.
04390
systems for which the positiveG has been reported prev
ously. The main difference is the presence in the Hodgk
Huxley model of several time scales: the relaxation time
the stable state, and scales which define the intra-well
namics. This is in contrast to trigger systems and the ov
damped bistable oscillator, which are characterized only b
relaxation time scale. Liuet al. @1# suggest that their result
~i.e., the absolute enhancement of the SNR! may be attrib-
uted to the presence of intrawell dynamics, in addition
interwell dynamics. This suggestion is apparently incons
tent with the results of earlier investigations@11,12#, showing
that the SNR and amplification are bothdecreasedby in-
creasing complexity of the intrawell dynamics.

In the context of earlier work, therefore, the results
Ref. @1# for the Hodgkin-Huxley model must be regarded
quite unexpected, especially in cases~a! and ~b!. We have
tried to reproduce their results using the same parameters
a different numerical scheme for integration of the Lange
equations. We have also chosen an integration time step
is four times smaller than in Ref.@1# ~for the same noise
1-3
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correlation time!, in order to be confident that we hav
avoided possible aliasing effects@13#. The numerical scheme
has been exhaustively tested and approved for use in a
wide range of problems@14#. In addition to the power spec
trum, we have also calculated time statistical distributions
spikes~switching between states! of the neuron.

The results of our numerical simulations are presente
Figs. 5–7. We used the same parameters as Liuet al. @1# @see
the caption of Fig. 1~a! in Ref. @1# for parameters of the
harmonic signal, and the caption of Fig. 3 in Ref.@1# for
parameters of the pulse signal#. We have calculated the SNR
for the full dynamics~without transformation to a two-stat
dynamics! of the neuron voltage potentialV(t), and also for
the spike dynamics ofV(t), which was obtained by convert
ing V(t) into a sequence of pulses with the same amplitu
and duration as in Ref.@1#. Note that in Ref.@1#, only the last
type of dynamics was examined. It can be seen~Fig. 5! that,
for both harmonic and pulse signals, the output SNRs beh
like those in Ref.@1# ~see Figs. 1~a! and 3 on Ref.@1#! only
in the region of the maximum. For larger noise intensityD,
the output SNRs show quite different behaviors. The in
SNRs are different for all the values of noise amplitude.

FIG. 5. Results of numerical simulations for the Hodgki
Huxley model. The SNRR is plotted as a function of noise intensit
D ~a! for a harmonic signal and~b! for a pulse signal. The inputRi

(s) is compared in each case with the outputRo : for full dynamics
(h); and for pulse dynamics (n). The values ofR and noise in-
tensityD for which residence time distributions and phase distrib
tions are shown in Figs. 6 and 7 are indicated by arrows.
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contrast to Ref.@1#, it is clear that the present data show n
SNR improvement for either harmonic or pulse signals.

The form of the time statistical distributions~Figs. 6 and
7! again demonstrate the absence of a positiveG. Indeed, the
width of circle distributions increases with noise intens
~Fig. 6!, and the residence time distributions have seve
peaks separated by periods of the signal~Fig. 7!.

We have not attempted to reproduce the results repo
@1# for case~c!. However, especially given that Liuet al.
used the same numerical algorithm as for the single-neu
cases~a! and ~b!, the results of case~c! must be in question
and deserve to be checked.

In summary, using the same parameters as the autho
Ref. @1#, we can find no evidence to support the report
observation of absolute SNR enhancements in the Hodg
Huxley model of a neuron. Finally, we stress the close c
nection that exists between SNR enhancements and hop
processes: statistical measures of hopping dynamics ca
used to check the correctness of spectral calculations. In
mation flow in neuron dynamics can be characterized by
tistical measures of the hopping process, whereas the S
cannot be used for this purpose@15#.

-

FIG. 6. Phase disributionsp(w) for the Hodgkin-Huxley model
driven by~a! harmonic and~b! pulse periodic signals. The differen
lines relate to different noise intensities, corresponding to the
rows in Fig. 5; the thin full line corresponds to arrow 1, the dash
line to arrow 2, and the dash-dotted line to arrow 3. The values
phase are normalised by 2p. The bold full curves represent th
shape of signals.
1-4
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FIG. 7. Residence time distributionsp(t) are shown for the Hodgkin-Huxley model driven by a harmonic signal~left column! and pulse
periodic signal~right column!. The different figures are for different noise intensities corresponding to the arrows in Fig. 5;~a! and ~d!
correspond to arrow 1,~b! and ~e! to arrow 2, and~c! and ~f! to arrow 3. The values of time are normalized by the period of the sign
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