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Comment on “Signal-to-noise ratio gain in neuronal systems”
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We discuss the gain in signal-to-noise rat8NR) recently reported by Lieet al. [Phys. Rev. E63, 051912
(2001)] in the Hodgkin-Huxley neuronal model. We show first that the possibility of signal-to-noise ratio
enhancements can be checked by consideration of the statistical characteristics of switching between the
system states, and we examine how the SNR depends on the shape of a periodic signal. Second, we attempt to
verify the SNR gain reported by Liet al: based on spectral calculations and analyses of switching statistics,
we are unable to find any SNR gain in the Hodgkin-Huxley model.
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Liu et al. have reported1] noise-induced absolute en- then model the Hodgkin-Huxley system to see if a similar
hancements of the signal-to-noise rati®NR) in the  signature arises. We also simulate the full system and make
Hodgkin-Huxley model of a neuron. Solving the equationsdirect comparisons between the input and output SNR to see
numerically, they found that the output SNR could exceedf the latter becomes larger that the former.
the input SNR in the following case$a) a single neuron In Refs.[5,6], SNR enhancement was investigated via an
forced by harmonic signal and coloured noigig) a single analysis of the statistical characteristics of switching events
neuron forced by pulse signal and colored noise; @  between states. We now consider some of these rd$ilits
neural network forced by a common harmonic signal andmore detail. We have examined the transmission of a peri-
independent colored noise sources. odic signal and colored noise through a Schmidt trigger on

In this Comment we present arguments and numerical rethe basis of an analog electronic experiment. We have con-
sults demonstrating that, for the same parameters ag Ref. sjdered two types of periodic signals: harmonic signal and
such SNR improvements do not occur for either c@er  rectangular, which we will refer to as pulse signal To
case(b). _ - avoid aliasing, the experimental data were filtered by low-

In apparently demonstrating the possibility of an SNR en-aq5 analog filters. The data were then digitized with an
hancer_nent, Liet al.[1] have relle_d ona spec_tral calculation analog-digital converter card in a computer, where they were
of the input and output neuron signals, obtained through n fhen used to calculate the power spectrum and to build a

merical solution of the Langevin equations. Previous studies_ _. . C
[2,3] of the stochastic resonan¢®R) effect have shown that Tesidence timg8] and phasd9] distributions. The power

numerical calculations of input and output SNR values are
very readily prone to error. They have also demonstrf2éd
that, at least in the linear response limit, the SNR of a har-
monic signalcannotbe enhanced by passage through a sto-
chastic resonator.

A noise-induced absolute enhancement of the SNR is
thus, to say the least, unusual. There are only two known
cases where it has been reliably established. One is the level
crossing detectofLCD) trigger systeni4], and the other is
for the passage of a square wave through a Schmidt trigger
system[5,6]. In each of these cases there are simple physical
arguments as to how the effect arises, and a mass of corrobo-
ratory evidence as to its reality. For the more complex

Hodgkin-Huxley systen{1], on the other hand, there are --‘-60 055 : 1i5 )

only the numerical simulations. Methods of checking their ) 6 (V) ’

validity are therefore much to be desired. One way of doing

so is through consideration of the theoretical backgrdiahd FIG. 1. Experimental results for the Schmidt trigger. The differ-

though rigorous theoretical arguments exist only for the spezpceg between the output and input SN plotted as a function
cific cases of the LCD-triggef4] and a two-state system ot nojse intensityo for harmonic ) and for pulse periodic/)
with a static nonlinearity{7]). Another obvious check is signals. The threshold of the Schmidt triggek=0.47 V; the am-
through independent numerical simulations. In what fO"OWS,p“tude of the periodic Signa| is 0.41 V; the frequency of the peri_
we adopt both of these approaches. odic signal is 2r(400) Hz; and the cutoff frequency of the noise is
We first consider the occurrence of absolute SNR en100 kHz. The values o6 and noise intensity- for which residence
hancements in the Schmidt trigger, and note how the signaime and phase distributions are shown in Figs. 2—4 are indicated
ture of this effect is exhibited in the hopping statistics. Weby arrows.
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0.4 y y y y of the signal period, and the widths of both the residence
time and phase distribution decrease with increasing noise
intensity. The conclusion is correct if we consider hopping
dynamics only. This criterion can be applied to check the
results reported in Ref.1], which involved precisely this
kind of dynamics.

Note that, just as for the Schmidt trigger, we have ob-
served an association between an improvement in SNR and
an evolution of the hopping statistic distribution for the LCD
trigger and an overdamped bistable oscillator forced by
o . large, but subthreshold, pulses and noise. In all the cases the
systems are in the strongly nonlinear regifie8,5], and the
mechanism for improvement of the SNR consists of a non-
linear transformation of additive sum of pulse signal and
noise to qualitatively different hopping process. The positive
G phenomenon depends crucially on the pidhape and it
(b) 1 is not observed for harmonic subthreshold sigh&l§].

To illustrate the truth of the latter statement, we consider
the influence of a shape of periodic signal on SNR for the
case of a Schmitt trigger driven by noise and the sigg)
that is generated by a Van der Pol self-oscillator,

log(p(¢)

SRNPRRERL +5 IS y(t+h)=sgrfUy(t)—ax(t)/b—&(1)],
-6} ) i
. ; Ih] X~ €(1—x?)x+ wjx=0. (6
5 - - F ,
0 0.2 04 0.6 0.8 1 ) ,
© Here y(t+h) and y(t) are the Schmidt trigger outputs at

time moments t{(+h) andt, respectivelyh is the time step

FIG. 2. Experimental results for the Schmidt trigger. Its phasethat defines the trigger relaxation timg,= 0.1 is the trigger
distributionsp(¢) are shown for@) harmonic andb) pulse peri-  threshold,&(t) is colored noise of intensityr, cutoff fre-
odic signals. The different lines correspond to the arrows in Fig. 1quency f.=100, a is the amplitude(maximum deviation
The thin full line corresponds to arrow 1, the dashed line to arrow 2from zero leve) of the signalx(t) is the Van der Pol oscil-
and the dash-dotted line to arrow 3. The values of phasere  lator output,b is its amplitude,e is the nonlinearity param-
normalized by 2r. The bold full lines indicate the shape of signals. eter of the oscillator, and is the parameter that defines its

natural oscillation frequency. The parametgy is chosen to

spectrum was calculated by fast Fourier transform. The rek€ep the oscillation period equal 1o=2. The shape of the
sults are presented in Figs. 1—3. generated signal depends ore and approaches a rectangu-

In Fig. 1 the difference between output and input sNR/ar shape as increases. To characterize the shape of the

[10], G=R,—R;, is plotted as a function of noise amplitude signalx, we introduce the qualit$s

o for pulse and harmonic signals; note tk&is equivalent to

the quantityg, in Ref.[1]. For the pulse signal there is an fT|x(t)|/b

interval of noise amplitude within which the output SNRJ 0

exceeds the input valuR;. The residence time and phase S= T

distributions for different noise amplituddsee caption of

Fig. 1) are shown in Figs. 2,3. For the harmonic signal, the

widths of the phase distributidifrig. 2(a)] and the residence Sis equal to 1 for a pulse signal aig¥ 1/7~0.6366 for a
time distribution[Figs. 3a)-3(c)] are increasing with noise harmonic signal.

intensity, and there is no improvement of SNR. For the pulse The dependences @& on the noise amplitude are dis-
signal, within the range of noise amplitude where outputplayed in Fig. 4 for different values af. It can be seen that
SNR exceeds the input value, the distribution widtRgs.  for the signal shapes that are harmonic, or close to harmonic,
2(b) and 3d)-3(f)] decrease with noise intensity. The resi- SNR improvement does not occu® only increases above
dence time distributioffFigs. 3d)-3(f)] has peaks at mul- zero for larger values oé (and for the pulse signal, shown
tiples of the signal period when an improvement in SNRfor comparisoiy and SNR improvement takes place only for
exists. Thus, based on the behaviors of residence times am@rtain shapes of signals, which are similar to @teztangu-
phase distributions, we can suggest an additional criterion fdiar) pulse signal shape.

the existence of a positive: if there is SNR gain, then the Of course, as the authors of REt] have correctly noted,
residence time distribution has one peak arising at multiplethe Hodgkin-Huxley model is quite different from all the
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FIG. 3. Experimental results for the Schmidt trigger driven by a harmonic sitgfatolumn and pulse periodic signétight column.
Residence time distribution®(7) shown for three different noise intensities correspond to the arrows in F{g) &nd(d) correspond to
arrow 1,(b) and(e) to arrow 2, andc) and(f) to arrow 3. The values of time are normalized by the period of the harmonic signal.
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FIG. 4. The results of numerical simulations of systélm The
difference in SNRR between input and outpug, is plotted as a
function of noise intensityr for different shapesof the periodic
signal: harmonic signal@) with S=2/7~0.6366; pulse signal
(A) with S=1; parametere=1 (X) with S~0.6493; e=5 (+)
with S~0.7455; e=10 (V) with S~0.7862; e=25 () with S
~0.9265; ande=100 (¢ ) with S~0.9822.

systems for which the positiv& has been reported previ-
ously. The main difference is the presence in the Hodgkin-
Huxley model of several time scales: the relaxation time to
the stable state, and scales which define the intra-well dy-
namics. This is in contrast to trigger systems and the over-
damped bistable oscillator, which are characterized only by a
relaxation time scale. Liet al. [1] suggest that their results
(i.e., the absolute enhancement of the $hikRay be attrib-
uted to the presence of intrawell dynamics, in addition to
interwell dynamics. This suggestion is apparently inconsis-
tent with the results of earlier investigatiofis, 12, showing

that the SNR and amplification are botlecreasecby in-
creasing complexity of the intrawell dynamics.

In the context of earlier work, therefore, the results of
Ref.[1] for the Hodgkin-Huxley model must be regarded as
quite unexpected, especially in cages and (b). We have
tried to reproduce their results using the same parameters and
a different numerical scheme for integration of the Langevin
equations. We have also chosen an integration time step that
is four times smaller than in Refl] (for the same noise
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FIG. 5. Results of n_umerical simulations for the _Hodgk_in- FIG. 6. Phase disributions(¢) for the Hodgkin-Huxley model
guxlefy moﬂel. The_ SNFR 'SI plotte(: asa fulnctlo_n Ofln_?_';'e _'nt?;s'ty driven by(a) harmonic andb) pulse periodic signals. The different
O(a)_ ora arm(‘,’f“" 5|grr]1a an(b)_ r(})rha pulse 5|?na:(.” de INPL; lines relate to different noise intensities, corresponding to the ar-
( )_'S czrrf\pare | n zac case wit TL N oultagt (;_\E u d yNamies — rows in Fig. 5; the thin full line corresponds to arrow 1, the dashed
(L)); and for pulse dynamicsX). The values oR and noise in- line to arrow 2, and the dash-dotted line to arrow 3. The values of

t_ensr[yD for whm_h re_'sldence time dISt.”bl.Jtlons and phase dl"\"t”bu'phase are normalised byn2 The bold full curves represent the
tions are shown in Figs. 6 and 7 are indicated by arrows. shape of signals

correlation timg, in order to be confident that we have contrast to Ref[1], it is clear that the present data show no
avoided possible aliasing effedts3]. The numerical scheme SNR improvement for either harmonic or pulse signals.
has been exhaustively tested and approved for use in a very The form of the time statistical distributior{Eigs. 6 and
wide range of problemgl4]. In addition to the power spec- 7) again demonstrate the absence of a posi@vindeed, the
trum, we have also calculated time statistical distributions ofwidth of circle distributions increases with noise intensity

spikes(switching between statesf the neuron. (Fig. 6), and the residence time distributions have several
The results of our numerical simulations are presented ipeaks separated by periods of the sigifd). 7).
Figs. 5-7. We used the same parameters agtLal.[1] [see We have not attempted to reproduce the results reported

the caption of Fig. (8 in Ref. [1] for parameters of the [1] for case(c). However, especially given that Liat al.
harmonic signal, and the caption of Fig. 3 in REf] for  used the same numerical algorithm as for the single-neuron
parameters of the pulse sighalVe have calculated the SNR casega) and(b), the results of casé) must be in question

for the full dynamics(without transformation to a two-state and deserve to be checked.

dynamicg of the neuron voltage potenti#l(t), and also for In summary, using the same parameters as the authors of
the spike dynamics d¥(t), which was obtained by convert- Ref. [1], we can find no evidence to support the reported
ing V(1) into a sequence of pulses with the same amplitudebservation of absolute SNR enhancements in the Hodgkin-
and duration as in Ref1]. Note that in Ref[1], only the last  Huxley model of a neuron. Finally, we stress the close con-
type of dynamics was examined. It can be sé€g. 5 that,  nection that exists between SNR enhancements and hopping
for both harmonic and pulse signals, the output SNRs behaverocesses: statistical measures of hopping dynamics can be
like those in Ref[1] (see Figs. (@) and 3 on Ref[1]) only  used to check the correctness of spectral calculations. Infor-
in the region of the maximum. For larger noise intengéy = mation flow in neuron dynamics can be characterized by sta-
the output SNRs show quite different behaviors. The inputistical measures of the hopping process, whereas the SNR
SNRs are different for all the values of noise amplitude. Incannot be used for this purpoEEs].
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FIG. 7. Residence time distributiopg ) are shown for the Hodgkin-Huxley model driven by a harmonic si¢ieél column and pulse
periodic signal(right column. The different figures are for different noise intensities corresponding to the arrows in K. &d (d)
correspond to arrow Xb) and(e) to arrow 2, andc) and (f) to arrow 3. The values of time are normalized by the period of the signal.
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